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Abstract 

  
The issue of how best to optimize Central Patterns Generators (CPG) for locomotion to generate motion for one leg with two 

degrees of freedom has inspired many researchers to explore the ways in which rhythmic patterns obtained by genetic algorithms may be 

utilized in uncoupled, unidirectional and bidirectional two CPGs. This paper takes as its assumption that the focus on stability analysis to 
decrease variation between steps brings about better results with respect to the gait locomotion, and argues that controlling the amplitude 

and frequency may lead to more robust results viz., stimulation for movement. 
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Introduction 

Recent studies on stimulation for movement, such as walking, swimming and running have shown that the basic 

locomotors patterns of biological systems are produced by a central nervous system, referred to  as the Central Pattern 

Generator (CPG) (Larsen; Sillar, 1996). Central Pattern Generators are biologically inspired networks of nonlinear 

oscillating neurons that are cable of producing rhythmic patterns without sensory feedback. Localized in the spinal 

cord of animals,  the CPG  sends signals from the brainstem to produce a periodic activity, and hence generates 

rhythmic commands for the muscles (Brown, 1911); (Ijspeert, 2008); (Ijspeert, Crespi, Ryczko, &Cabelguen, 2007); 

(Sproewitz, Moeckel, Maye, &Ijspeert, 2008). Recent studies on human body have shown that many functions that  

cannot be controlled by the human body consciously are controlled by the CPGs , such as breathing and digestion 

(Billard&Ijspeert, 2000). 

Generally speaking, CPGs are considered a set of nonlinear oscillators and each of the set of nonlinear oscillators 

is forced by the output of a sensor, which gives a time-index to the first-order information on the motion (Ijspeert, 

2008).A neural oscillator is formed by two neurons with inhibitive connections between them and the responses of 

two neurons of a neural oscillator suppress each other in such a way that one of them is extensor neuron and the other 

is flexor neuron (Bucher, Haspel, Golowasch, & Nadim, 2000); (Casasnovas&Meyrand, 1995); (Van Vreeswijk, 

Abbott, &Ermentrout, 1994).  

Interestingly, many physical structures of the limbs and arms have been modeled, and the control systems have 

been copied to regenerate the same move patterns in the robots as seen in nature. CPGs always synchronize with body 

movement and accordingly burst rhythmic patterns to motor neurons at an appropriate time in a movement cycle 

(Ijspeert, 2008). In legged locomotion, each leg is controlled by distinct neuronal network, where the CPG gives 

signals to each joint (Amrollah&Henaff, 2010; Ijspeert, 2008). Experiments reveal that there is a tight coupling 

between sensory feedback and CPGs. The reflexes are phase-dependent,theywillhave different effects depending on 

the timing within locomotorscycle (Pearson, 1995).Various models of CPG used for controlling the biped locomotion 

in human robots have been introduced (for details, see, Aoi& Tsuchiya, 2005; Endo et al., 2005; (Taga, 1998); (Taga, 

Yamaguchi, & Shimizu, 1991). Different modes of locomotion have been controlled by Models of CPGs, such as the 

CPG models used with octopod and hexapod robots inspired by insect locomotion (Arena et al., 2004; Inagaki et al., 

2006; Inagaki, Yuasa, & Ari, 2003). CPGs have been also used to control swimming robots, such as swimming 

lamprey or eel robots (see, Arena, 2001; Crespi, &Ijspeert, 2008; Ijspeert, &Crespi, 2007; Inagaki et al., 2006), as 

well as to control Quadruped robots (for details, see, Billard&Ijispeert, 2000; Brambilla, Buchli, &Jispeert, 2006; 

Fukuoka, Hikmura, & Cohen, 2003). This paper summarizes the kinematics model used for simulations and gaits 

design, explains the Uncouple, Unidirectional and Bidirectional two CPGs structures, and analyze stability of the 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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mode. It also explores how optimized Central Pattern Generator structures may be adapted to robotic systems 

that perform one-leg movement, and gives suggestions for future research. 

 

Kinematic Model 
 

Kinematic model is designed to perform basic analysis. Figure1 shows the flight and stance modes of the leg structure, 

where𝐿1,𝐿2  represent the lengths of the thigh and the calf leg respectively, and 𝜃1,𝜃2 show the angular positions of the hip 

and the knee. Let us also assume that (𝑥𝐴 , 𝑦𝐴) denotes the first coordinate of the hip, and (𝑥𝑓 , 𝑦𝑓) denotes the second 

coordinate of the knee. Now, if the tip of the second link touches the ground, the leg will behave like a revolute joint. This 

indicates that a zero slip is considered between the tip of the link and ground surface. As such, the body will move along x-

direction only in stance mode. 

 

 
 

Figure 1: Leg System in Swing and Stance Mode  

 

As Figure 1 shows, we have two cases: The first case is when the leg is in stance mode, the Kinematic Model has one 

degree of freedom. The hip joint angle𝜃1 is also calculated with respect to knee angle 𝜃2, which is determined by the CPG. 

The second case is when the leg is in swing mode, we obtain leg with 2 DOF. The hip and knee joint angles are calculated 

by Uncoupled, Unidirectional and Bidirectional two CPGs. The kinematic equations are  

𝑥𝐴 = 𝑥𝑏 + 𝐿1𝑐𝑜𝑠𝜃1 , 𝑥𝑓 = 𝑥𝑏 + 𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠𝜃2, 

𝑦𝐴 = 𝐿1𝑠𝑖𝑛𝜃1 and 𝑦𝑓 = 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛𝜃2 

 

Central Pattern Generators (CPGs) 
 

As defined previously, CPGs are biologically inspired networks of nonlinear oscillating neurons that are cable of 

producing rhythmic patterns without sensory feedback. Recently, a plethora of applications have been implemented using 

different neutrals in robotic structures. These neutrals are implemented by software methods called CPGs, where the CPG 

unit is responsible for generating required angular references for the hip and knee joints. The mathematical differential 

equations present the CPGs in general formula ((Larsen)(Ijspeert & Crespi, 2007); (Ijspeert et al., 2007); (Sproewitz et al., 

2008), 

 

𝜑𝑖 = 2𝜋𝑣𝑖 +  𝑟𝑗 𝑤𝑖𝑗 sin 𝜑𝑗 − 𝜑𝑖 − ∅𝑖𝑗  

𝑗

𝑟 𝑖 = 𝑎𝑖  
𝑎𝑖

4
 𝑅𝑖 − 𝑟𝑖 − 𝑟𝑖  

𝜃𝑖 = 𝑟𝑖 1 + cos 𝜑𝑖   
 
 

 
 

   (1) 

 

 where 𝜃𝑖  is the output of oscillator 𝑖, which has amplitude 𝑟𝑖 . Both the amplitude and the output are angles expressed 

either in radians or in degrees, which are subsequently sent to the motor controllers of the robot. By deriving the equation 

(1), we obtain three types of CPGs, Uncoupled, Unidirectional and Bidirectional CPGs respectively. 

 

𝜑1 = 2𝜋𝑣1                                  

𝑟 1 = 𝑎1  
𝑎1

4
 𝑅1 − 𝑟1 − 𝑟 1 

𝜑2 = 2𝜋𝑣2                                  

𝑟 2 = 𝑎2  
𝑎2

4
 𝑅2 − 𝑟2 − 𝑟 2  

 
 

 
 

                    (2) 
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𝜑1 = 2𝜋𝑣1 + 𝑟2𝑤12sin(𝜑2 − 𝜑1 − ∅12)

𝑟 1 = 𝑎1  
𝑎1

4
 𝑅1 − 𝑟1 − 𝑟 1                    

𝜑2 = 2𝜋𝑣2                                                    

𝑟 2 = 𝑎2  
𝑎2

4
 𝑅2 − 𝑟2 − 𝑟 2                    

 
 

 
 

  (3) 

 

𝜑1 = 2𝜋𝑣1 + 𝑟2𝑤12sin(𝜑2 − 𝜑1 − ∅12)

𝑟 1 = 𝑎1  
𝑎1

4
 𝑅1 − 𝑟1 − 𝑟 1 

𝜑2 = 2𝜋𝑣2 + 𝑟1𝑤21sin(𝜑1 − 𝜑2 − ∅21)

𝑟 2 = 𝑎2  
𝑎2

4
 𝑅2 − 𝑟2 − 𝑟 2  

 
 

 
 

  (4) 

 

The output of the systems gives 𝜃1 = 𝑟1 1 + cos 𝜑1   and  𝜃2 = 𝑟2 1 + cos 𝜑2  , where 𝜃1  and 𝜃2 (defined 

previously) are said to represent the angular joints of the hip and the knee respectively, and the state variables 𝜑𝑖  and 𝑟𝑖  
equally represent the phase and the amplitude.  

The CPG will converge if isolated by 𝑣𝑖  and 𝑅𝑖 . The constant 𝑎𝑖  determines how fast the amplitude 𝑟𝑖  will converge to 

𝑅𝑖 .  When multiple CPGs exist, they are coupled together by the coupling weights 𝑤𝑖𝑗  and phase biases ∅𝑖𝑗 ,  where 𝑖, 𝑗 =

1,2 and 𝑖 ≠ 𝑗. Certain forms of outputs are possible by changing the numerical values of parameters (For more details about 

different CPGs, see,  (Amrollah & Henaff, 2010); (Parker & Smith, 1990). Figure 2 shows one CPG in Simulink block. 

 

 
 

Figure 2: Internal Dynamics of one CPG (Uncoupled) 

 

Stability 
 

It is a clear for the first case uncoupled two CPGs thatthere is no bifurcation, and that the first and the second 

CPGs are independent of each other and they are always oscillators. As for the second case, Unidirectional Two CPGs, 

where ∅ = 𝜑2 − 𝜑1  denotes the phase difference, 𝑟1 and 𝑟2  converge asymptotically to 𝑅1 and 𝑅2 respectively. The time 

evolution of the phase difference is determined by  

∅ = 𝑓 ∅ = 𝜑 2 − 𝜑 1  = 2𝜋 𝑣2 − 𝑣1 − 𝑟2𝑤12sin(∅ − ∅12) 

If the oscillators synchronize, they will do so at the fixed points ∅∞ . We obtain these points when ∅ = 0.  

Now, when 𝑓 ∅∞ = 0, 𝑖𝑡  gives us   

∅∞ = arcsin  
2𝜋 𝑣2 − 𝑣1 

𝑅2𝑤12
 + ∅12  

Note that there is no fixed-point if 

 
2𝜋 𝑣2 − 𝑣1 

𝑅2𝑤12
 > 1. 

That is, when the difference of intrinsic frequencies is too large compared to the coupling weight𝑤12multiplied by the 𝑅2 

amplitude of the oscillator 2, the oscillators do not synchronize and are said to drift.If  

 
2𝜋 𝑣2 − 𝑣1 

𝑅2𝑤12
 = 1, 

then, there is a single fixed point ∅∞ =
𝜋

2
+ ∅12 , when 𝑣2 > 𝑣1, and∅∞ = −

𝜋

2
+ ∅12when𝑣2 < 𝑣1. 

This solution is asymptotically stable, and the two oscillators will synchronize with that phase difference. 

Finally, if 

 
2𝜋 𝑣2 − 𝑣1 

𝑅2𝑤12
 < 1, 
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then there are two fixed points; one of them is stable and the other one is unstable. The stability of the fixed point is 

determined by the sign of  
𝑑𝑓 ∅∞ 

𝑑∅
= −𝑅2𝑤12 cos ∅∞ − ∅12 . 

The fixed point is stable if this quantity is negative, and unstable if it is positive. If the initial phase difference is the unstable 

fixed point, the two oscillators will remain synchronized with that phase difference, hence there is no bifurcation. 

The third case is Bidirectional Two CPGs. Let us consider four different cases: 

 

Case 1: 
Let us assume that  ∅12 = −∅21 , 𝑤12 = −𝑤21 = −𝑤,and𝑅1 = 𝑅2=1. Then, as  𝑡 → ∞ we will have 𝑟1 → 𝑅1 and 𝑟2 → 𝑅2. 

𝜑1 = 2𝜋𝑣1 − 𝑤sin(𝜑2 − 𝜑1 − ∅12) 

𝜑2 = 2𝜋𝑣2 + 𝑤sin(𝜑1 − 𝜑2 − ∅21) 

Also, for∅ = 𝜑2 − 𝜑1 which denotes the phase difference, the time evolution of the phase difference is determined by  

∅ = 𝑓 ∅ = 𝜑 2 − 𝜑 1  = 2𝜋 𝑣2 − 𝑣1 . 
Now, if 𝑓 ∅∞ = 0, then 𝑣2 = 𝑣1, which means there is no fixed point. In this case, it is said to drift. 

 

Case 2: 
Let us assume that∅12 = −∅21 ,𝑤12 = 𝑤21 = 𝑤 and 𝑅1 = 𝑅2=1. Then,   

∅ = 𝑓 ∅ = 𝜑 2 − 𝜑 1  = 2𝜋 𝑣2 − 𝑣1 − 2𝑤 sin ∅ − ∅12 . 
Now,𝑓 ∅∞ = 0 gives us   

∅∞ = arcsin  
𝜋 𝑣2 − 𝑣1 

𝑤
 + ∅12 . 

If the oscillators synchronize, they will do so at the fixed points ∅∞ . Note that there is no fixed-point if 

 
𝜋 𝑣2 − 𝑣1 

𝑤
 > 1. 

That is, when the difference of intrinsic frequencies is too large compared to the coupling weight𝑤, the oscillators do not 

synchronize, and are said to drift. If, on the other hand, 

 
𝜋 𝑣2 − 𝑣1 

𝑤
 = 1, 

then, there is a single fixed point ∅∞ =
𝜋

2
+ ∅12  when 𝑣2 > 𝑣1, and ∅∞ = −

𝜋

2
+ ∅12when 𝑣2 < 𝑣1. 

This solution is asymptotically stable, and the two oscillators will synchronize with that phase difference. Finally, if 

 
𝜋 𝑣2 − 𝑣1 

𝑤
 < 1 

then, there are two fixed points; one of them is stable and the other one is unstable. The stability of the fixed point is 

determined by the sign of  
𝑑𝑓 ∅∞ 

𝑑∅
= −𝑤 cos ∅∞ − ∅12 . 

The fixed point is stable if this quantity is negative, and unstable if it is positive. If the initial phase difference is the unstable 

fixed point, then the two oscillators will remain synchronized withthat phase difference. 

Case 3: 
Let us assume that  ∅12 = −∅21  and 𝑅1 = 𝑅2=1. Then 

∅ = 𝜑 2 − 𝜑 1  = 2𝜋 𝑣2 − 𝑣1 − (𝑤21 + 𝑤12)sin(∅ − ∅12) 

and 𝑓 ∅∞ = 0 leads to the fixed point 

∅∞ = arcsin  
2𝜋 𝑣2 − 𝑣1 

𝑤21 + 𝑤12
 + ∅12 . 

Note that there is no fixed-point if  

 
2𝜋 𝑣2 − 𝑣1 

𝑤21 + 𝑤12
 > 1. 

That is, when the difference of intrinsic frequencies is too large compared to the coupling weight𝑤21 + 𝑤12 ,  the oscillators 

do not synchronize, and are said to drift. If 

 
2𝜋 𝑣2 − 𝑣1 

𝑤21 + 𝑤12
 = 1 

then, there is a single fixed point 

∅∞ =
𝜋

2
+ ∅12  when 𝑣2 > 𝑣1, and 

∅∞ = −
𝜋

2
+ ∅12  when 𝑣2 < 𝑣1. 

This solution is asymptotically stable, and the two oscillators will synchronize with that phase difference. Finally, if  
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2𝜋 𝑣2 − 𝑣1 

𝑤21 + 𝑤12
 < 1 

then, there are two fixed points; one of them is stable and the other one is unstable. The stability of the fixed point is 

determined by the sign of  
𝑑𝑓 ∅∞ 

𝑑∅
= −(𝑤21 + 𝑤12) cos ∅∞ − ∅12  

Again, the fixed point is stable if this quantity is negative, and unstable if it is positive. If the initial phase difference is the 

unstable fixed point, then the two oscillators will remain synchronized with that phase difference. 

 

Case 4: 

Let us take∅12 = −∅21 .In this case,we have 

∅ = 𝜑 2 − 𝜑 1 = 2𝜋 𝑣2 − 𝑣1 − (𝑅1𝑤21 + 𝑅2𝑤12)sin(∅ − ∅12) 

and 𝑓 ∅∞ = 0results in  

∅∞ = arcsin  
2𝜋 𝑣2 − 𝑣1 

𝑅1𝑤21 + 𝑅2𝑤12
 + ∅12 . 

Note that there is no fixed-point if 

 
2𝜋 𝑣2 − 𝑣1 

𝑅1𝑤21 + 𝑅2𝑤12
 > 1 

That is, when the difference of intrinsic frequencies is too large compared to the coupling weight multiple by 

amplitude𝑅1𝑤21 + 𝑅2𝑤12 , the oscillators do not synchronize and are said to drift. If 

 
2𝜋 𝑣2 − 𝑣1 

𝑅1𝑤21 + 𝑅2𝑤12
 = 1 

then, there is a single fixed point ∅∞ =
𝜋

2
+ ∅12  when 𝑣2 > 𝑣1 , and ∅∞ = −

𝜋

2
+ ∅12  when 𝑣2 < 𝑣1 . This solution is 

asymptotically stable, and the two oscillators will synchronize with that phase difference. Finally, if 

 
2𝜋 𝑣2 − 𝑣1 

𝑅1𝑤21 + 𝑅2𝑤12
 < 1 

There are two fixed points; one of them is stable and the other one is unstable. The stability of the fixed point is determined 

by the sign of             
𝑑𝑓 ∅∞ 

𝑑∅
= −(𝑅1𝑤21 + 𝑅2𝑤12) cos ∅∞ − ∅12  

The fixed point is stable if this quantity is negative, and unstable if it is positive. As such, when the initial phase difference 

is the unstable fixed point, the two oscillators will remain synchronized with that phase difference. 

 

Optimizing Gait Generation 
 

In this section, we will consider three cases, where each pattern generator outputs angular patterns for each joint. 

To evaluate gait generation, we need to find the optimal parameter sets by using central pattern generators, which explains 

how the angular of the hip and the knee should vary with time to generate motion along x-direction. For each case, 

parameter sets for the central pattern of each joint is given below:   

𝑃1 = {𝑎1, 𝑣1 , 𝑅1, 𝑎2, 𝑣2 , 𝑅2}. Uncoupled Case 

𝑃2 = {𝑎1, 𝑣1 , 𝑅1, 𝑎2, 𝑣2, 𝑅2, 𝑤12 , ∅12}. Unidirectional case 

𝑃3 = {𝑎1, 𝑣1 , 𝑅1, 𝑤12 , ∅12 , 𝑎2, 𝑣2, 𝑅2, 𝑤21 , ∅21}. Bidirectional case. 

 

(Nolfi & Floreano, 2000) and (Alexander, 1996) used genetic algorithms to find the optimal parameter sets. In this 

study, there is only one cost function utilized; the different walking patterns depend on this cost function. 

𝐽 = −𝐶1  𝑥𝑏 𝑘 

𝑛

𝑘=1

+ 𝐶2[ (𝜃1
2 𝑘 +

𝑛

𝑘=1

𝜃2
2(𝑘))]/𝑁,     (5) 

𝐶1, 𝐶2 ∈ [0,1], with 𝐶1 + 𝐶2 = 1, 𝑛 is the number of elements of position vector in simulation, and 𝑁 is the length of 

the time. To maximize the displacement, or the velocity, we should minimize 𝐽. If 𝐶2 = 0, then the aim is to maximize the 

displacement. However, if 𝐶1𝐶2 ≠ 0, then there will be another cost function involving energy related terms in addition to 

the position. The goal is to minimize the energy while changing the position. Actually, this fact is available in biological 

locomotion (Alexander, 1996). The angular positions of the hip and knee joints are shaped during the optimization. These 

cost functions result in two different walking patterns. The first cost function presents walking pattern with large variations 

in joint, because only the displacement is emphasized in this function. However, the second one moves in +𝑥 direction with 

small angular variations of hip and knee joints. 
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Still, there are two constraints 0 ≤ 𝜃1 , 𝜃2 ≤ 𝜋. Figures 3 through 5 below show some gaits as a result of evolutionary 

optimization technique. Evolutionary optimization algorithms reveal the gait below in case constraints applied for joint 

angles. In this study, we used the hybrid function during the optimization. A hybrid function is an optimization function that 

runs after the genetic algorithm terminates in order to improve the value of the fitness function. The hybrid function uses the 

final point from the genetic algorithm as its initial point. You can specify a hybrid function in Hybrid function options. 

Specifically, we used Optimization Toolbox function at pattern search or fmincon, a constrained minimization function. The 

example first runs the genetic algorithm to find a point close to the optimal point and then uses that point as the initial point 

for pattern search or fmincon.Following gait optimization, we may conclude that locomotion is achievable by using the cost 

function 𝐽for the case of the uncoupled two CPGs such as in the Figure 3.a, 3.b and 3.c 

 

Figure 3a: Simulation of Walking Gait with Constraints 

 

Figure 3b: Joint angles against Time 

 

Figure 3c: Displacement against Time 

 

Again, by utilizing gait optimization, stimulation of movement may be obtained using the cost function 𝐽for the case of 

the Unidirectional two CPGs, it is show by Figure 4.a, 4.b and 4.c 

 

 

Figure 4a: Simulation of Walking Gait with Constraints 
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Figure 4b:Joint angles against Time 

 

 

Figure 4c: Displacement against Time 

 

Finally, by optimizing gait we obtain movement by means of using the cost function 𝐽for the case of the bidirectional 

two CPGs, figure 5.a, and 5.b show this results 

 

 

Figure 5a: Simulation of Walking Gait with Constraints 

 

 
 

Figure 5b: Joint angles against Time 
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Figure 5c: Displacement against Time 

Table 1 and 2 below summarize the results of the optimization in unbounded and bounded region. It is concluded that 

all parameters in three types of CPGs have positive values. The parameters𝑅1  and 𝑅2  are the smallest values in both 

Tables. A close look at table 1and 2, we clearly realize that in Table 1 the displacement and the velocity increase too much, 

hence it is not possible to be physically implemented, simply because optimization has been carried out in an unbounded 

region. By contrast, in Table 2, optimization can be physically implemented. Moreover, the three cases reveal no 

bifurcation; better results come from bidirectional two CPGs, though. 

 

Table 1: 

Uncoupled, Unidirectional and Bidirectional Two CPGs in unbounded in 10 seconds 

Start at initial points 
Uncoupled, Unidirectional and Bidirectional Two CPGs in unbounded in 10 seconds 

Parameters values Fval Xb Optimization type E 

30.3617  28.5861   0.8646  20.3022  

14.2796  1.2199                   

30.7363    28.5866    0.8628     

20.3314    14.2796    1.2202 
-2.3849e+004 47.8770 

GA & Hybridfcn at 

fmincon to uncoupled 
3.0341 

30.7363   28.5866    0.8628   20.3314   
14.2796   1.2202           

30.6689    28.5866    0.8629   20.3406    
14.2796      1.2202 

-1.1924e+004 47.8777 
GA & Hybridfcn at 

fmincon to uncoupled 
3.0343 

13.2211  27.9674 0.8541   23.3678   

20.0000  1.2259   47.6153   50.7133                                     

17.2865   40.4284    0.9287   28.0195   

33.3458     1.2273   52.0449   50.3126 
-2.8213e+004 112.8684 

GA & Hybridfcn at 

patternsearch to 
unidirectional 

2.9301 

59.3216   34.6978     0.8072    8.6457      

1.1144    59.4932    34.2898    1.2267     
12.0076    6.7790   

61.4180   34.8193    0.8691     8.8225    

1.0938     61.9136   34.4234    1.3595   
12.1180    6.7896 

-6.8743e+004 138.4982 

GA & Hybridfcn at 

fmincon to 
Bidirectional 

3.6014 

61.4180   34.8193    0.8691    8.8225       

1.0938    61.9136  34.4234    1.3595     

12.1180    6.7896     

62.4355   34.8369    0.8565     8.9123    

1.1130     61.9463   34.4603    1.3678   

12.1621     6.8044 

-3.4536e+004 139.0181 
Hybridfcn at fmincon 

unidirectional 
3.6486 

17.2865   40.4284    0.9287   28.0195   
33.3458    1.2273   52.0449   50.3126    

17.5270   40.6125    1.0038   27.1307   
33.3437   1.2270    51.1525   50.1892 

-5.7859e+004 116.9131 

GA & Hybridfcn at 

patternsearch to 

unidirectional   

3.0240 

 

Table 2: 

Optimizing Uncoupled, Unidirectional and Bidirectional Two CPGs in bounded region in 10 sec 

By optimizing of two CPGs 
Optimizing Uncoupled, Unidirectional and Bidirectional Two CPGs in bounded region in 10 sec 

Parameter’s values Fval xb Optimization type E 

D & E 

Two Uncoupled 

without 
constraints 

33.7958    1.9992 1.4355   68.5282    1.9857      

3.2592 

-1.1020e+03 

 
4.4082 GA 18.4589 

D & E 
Two Uncoupled 
with constraints 

18.6883   1.9928    0.7746   46.4124 1.9604      
1.5327 

-1.3260e+03 
 

4.9613 
GA & Hybrid function at 

pattern search 
4.1004 

D 
Two Uncoupled 

with constraints 

35.3887   1.9955    0.7564   26.4992   1.9606  

1.5707 
-2.7312e+03 4.9856 

GA & Hybrid function at 

fmincon 
4.2406 

E 
Two Uncoupled 

with constraints 

0.0613   0.0426   0.0070   0.0309   0.0429 

0.0263 
9.3082e-09 0.3100 

GA & Hybrid function at 

pattern search 

9.3175e-

09 

D & E 
Unidirectional 

Two CPGs 

50.0000   1.9850    0.7804   13.1020   1.9230      

1.5356    2.0000     -0.3699 
-1.7074e+03 6.4220 

GA & Hybrid function at 

pattern search 
4.2509 

D 
Unidirectional 

Two CPGs 
20.2328    1.9347    0.7369   25.6692   -1.9619    
1.5424   -0.3227     3.2986 

-3.0227e+03 5.5084 
GA & Hybrid function at 

fmincon 
4.1719 

D & E 
Bidirectional Two 

CPGs 
48.2175   1.9592      0.8301    1.9690   -0.5784    
31.8414    1.9616    1.5398   1.7346 

-1.6230e+03 6.2665 
GA & Hybrid function at 

pattern search 
4.2799 

D 
Bidirectional Two 

CPGs 

9.5946   1.9499   0.8009   1.2422  5.5546  

48.1560  1.9717    1.2744      1.9235 
-3.1376e+03 6.1787 

GA & Hybrid function at 

fmincon 
2.9796 

Where E= Energy, D= Displacement, Fval= objective Function and xb=Displacement in meter 
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Conclusion and Future Directions 
 

To sum up, in this paper uncoupled, unidirectional and bidirectional two CPGs are used to generate motion for one leg 

with two degree of freedom. The study shows that when optimization is conducted in an unbounded region, the results are 

impossible to be implemented physically. Furthermore, by using genetic algorithms and hybrid functions, it seems that it is 

difficult to find a global region, because there is no bifurcation for the parameters in the three cases above.However, when 

we consider the stability analysis presented above with the objective of decreasing the variation between steps, it is vital that 

we control the amplitude and the frequency to obtain better results. Such results, we believe, can be implemented physically. 

Most important, the study reveals CPGs can control biped locomotion not only in animals but also in human beings. Future 

research should investigate whether CPGs can control other functions in human bodies, such as breathing, let alone the 

stimulation of the arm movement. 
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