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Abstract 

 
In this paper, a new global optimization method is proposed for an optimization problem with twice-differentiable objective 

function a single variable with box constraint. The method employs a difference of linear interpolant of objective and a concave function, 
where the former is a continuous piecewise convex quadratic function underestimator. The main objectives of this research are to determine 

the value of lower bound that does not need an iterative local optimizer. The proposed method is proven to have a finite convergence to 

locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering method. 
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Introduction 

In the convex optimization, we seek a local solution widely enough to determine the optimal solution [1,2,21]. 

While the objective of global optimization is to find the globally best solution of possibly nonlinear models, in the 

possible or known presence of multiple local optima. Formally, global optimization seeks global solutions of a 

constrained optimization model[20]. Nonlinear models are ubiquitous in many applications,e.g., in advanced 

engineering design, biotechnology, data analysis, environmental management, financial planning, process control, 

risk management, scientific modeling, and etc. Their solution often requires a global search approach 

[14,19,4,23,3,22,11,18]. 

A variety of adaptive partition strategies have been proposed to solve global optimization models. These are 

based upon partition, sampling, and subsequent lower and upper bounding procedures. These operations are applied 

iteratively to the collection of active subsets within the feasible set. In this connection several works have been 

proposed among others. Adjiman et al. [5] presented the detailed implementation of the alpha BB approach and 

computational studies in process design problems such as heat exchanger networks, reactor-separator networks, and 

batch design under uncertainty. 

Akrotirianakis and Floudas [7] presented computational results of the new class of convex underestimators 

embedded in a branch-and-bound framework for box-constrained NLPs. They also proposed a hybrid global 

optimization method that includes the random-linkage stochastic approach with the aim of improving the 

computational performance. Caratzoulas and Floudas [9] proposed novel convex underestimators for trigonometric 

functions. 

 Recently, years univariate global optimization problems have attracted common attention because they arise in 

many real-life applications and the obtained results can be easily generalized to the multivariate case 

[6,17,13,8,24,25]. 

In this paper, we propose an approache to find a global minimum of a univariate objective function. 

In the following we will present our technique. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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A Piecewise Quadratics Underestimations ( ): 

The main idea consists in constructing piecewise quadratic underestimation functions closer to the given non-

convex  in a successive reduced interval , and their minimums are explicitly given, Instead of using a single 

large square away from the objective function [16], the determination of its minimum implies a local method [5]. We 

propose an explicit method of quadratic relaxation of building global optimization problems with bounded variables. 

This construction is based on the work of authors in [16], using the quadratic splines. The generated quadratic 

programs have exactly explicit optimal solutions.  In each interval in the target underestimated by several quadratic 

splines reliable to calculate the lower bounds. 

The structure of the rest of the paper is as follows: Section 2 presents the two underestimators proposed in [16,5]. 

Section 3 discusses the construction of a new lower bound on the objective function, and describes a proposed 

algorithm  to solve the univariate global optimization problem with box constrained. Section 4 presents some 

numerical examples of different non-convex objective functions while we conclude the paper in Section 5. 

Background 

Consider the following global minimization problem: 

 

with  is a non-convex twice differentiable function on . 

In what follows we give two underestimators developed by the authors, respectively in [5,16]. 

 Underestimator in (   method[5] 

The underestimator in   method on the interval  is as follows 

 

where for all  

This underestimator satisfies the following properties: 

(1) It is convex for all . 

(2) It coincides with the function  at the endpoint of the interval  

(3) It is an underestimator of the objective function  

(4) Requires solving the convex problem  for all  to determine the values of the lower bound 

of the objective function  For more details, see [5]. 

Quadratic Underestimator in  Method [16].  

The quadratic underestimator developed in [16] on the interval  is: 

 

where  for all . 

This quadratic underestimator satisfies the following properties: 
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(1) it is convex  for all . 

(2) It coincides with the function  at the endpoint of the interval  

(3) It is an underestimator of the objective function  

(4) The values of the lower bound are given explicitly. For more details, see [16]. 

Advantages and disadvantages of two methods. 

(1) The advantage of , is the best initial lower bound obtained, also the underestimator is close to the objective 

function (see Table 2,3). 

(2) The disadvantage of , uses a local method for determining the values of the lower bounds. 

(3) The advantage of , is the values of the lower bounds are given explicitly. 

(4) The disadvantage of  is the initial lower bound is very far from the optimal solution, also the 

underestimator is far away from objective function (see Table 2,3). 

 

The Proposed Underestimator(KBBm) 

In this section we present the new lower bound. In this lower bound we merge the advantages of  and . 

Let  be a bounded closed interval in  . Let  be a continuously twice differentiable function on . Let 

and be two real numbers in  such that . Let  and  be real valued functions defined by 

 

 if   if  

 

For all  in the interval [ , ], we have . We have also is equal to 0 if ; and 1 

otherwise. Let  and be the piecewise linear interpolant to  at points  see [10, 12]. Such that 

  

 
 

Knowing that is a univariate function that needs to be underestimated in the interval . Suppose that the 

nodes are chosen to be equally spaced in , so that  

 

 
 

For every interval  we construct the corresponding local quadratic underestimator as follows 

 

 
where  

 
 

 

Figure 1.Show the tightness of our underestimator  than the  for  

 

where  is an upper bound of the second derivative which is valid for  Instead of considering one 

quadratic lower bound over  we construct a piecewise quadratic lower bound. 

In the following theorem we will show that the new lower bound is tighter than the lower bound constructed in 

[16]. 

 

Theorem  We have 

 
 

where  
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The function  is a piecewise convex valid underestimator of  for all  in  and it is tighter than the 

underestimator  introduced in [16]. 

 

 

 

 

In each sub-interval one have to compute a quadratic lower bound underestimation of the objective function 

. 

 

 

Now, we compute the values of in order to detect the best lower bound we compare all lower bounds and 

preserve the smallest one as follows: 

 

   
 

The upper bound is calculated by the following comparisons and maintains the best ever. The objective function is 

evaluated at different points so has to determine the upper bound. 

 

. 

 

Remark . The proposed underestimator  verifies the following properties. 

 

 

(1) It is piecewise convex on  

(2) It coincides with the function  at the endpoint of the interval  for all  

(3) It is an underestimator of the objective function  

(4) The values of the lower bound are given explicitly. 

(5) When we double the quadratic we obtained a good lower bounds see Table (5). 

 

The different steps for solving the problem  are summarized in the following proposed algorithm: 



Aaid Djamel /ECBA-2016/Full Paper Proceeding Vol No-248, Issue1 ,1-10 

 
 

 

 

 
 International Conference on “Engineering and Technology, Computer, Basics & Applied Sciences” ECBA-2016 

 
5 

 

 

 

Algorithm 

Input : 

 

  : A real interval. 

  :The accuracy. 

 : The objective function. 

 : The number of quadratic. 

 

Output : 

 

 : The global minimum of . 

(1) Initialization step  

(a) for all  Compute , and set  

(b) Compute  such that on each  for all  

(c) Compute by using (*) for all  

(d) Compute  

(e) Set  with  

(f)  is the index corresponding to   

(2) Iteration step 

While  and do 

(a)  and apply step a,b,c,and d 

(b) Update  

(c) For all  

 Elimination step : if  then remove from  

  Selection step : if  then ,   is the index corresponding to  

(d)  

end While 

 

(3)  is the optimal solution corresponding to the best found. 

end algorithm 

 

Theorem. [Convergence of the algorithm] 

Either the algorithm is infinite or it generates a bounded sequence . Any accumulation point of the sequence 

is a global optimal solution of . We have:  

 

Computational Aspects and Results 

To measure the performances of our  algorithm, we perform a comparative study with  and  . 

These algorithms are implemented in C programming language with double precision floating point, and run on a 

computer with an Intel (R) core (TM) i3-311MCP4 with CPU 2.40GHz. Numerical tests are performed in two parts 

on a set of test functions. In the first experiment, we compare the performances of the ,  and the  

algorithms on a set of 10 functions. Here, we include a method that computes the positive numbers    and  [15]. 

The number of the quadratic functions used in  at each iteration as fixed to . And the accuracy fixed to 

. In the second experiment we were tested the  algorithm according to the initial lower bound obtained 

for different numbers of quadratic function used on a set of 20 functions. 

 

In our results, we consider the following notations as table anterior : 

  is the optimum obtained 
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  is the initial lower bound 

   is the execution time in seconds 

   is the total number of interval 

   is the number of intervals eliminated 

   is the number of local minimum 

   is the number of global minimum 

   An asterisk denotes that the lower bond is equal to the known global optimum , within six decimal digits of 

accuracy. 

 

Table 1: 

Test Functions 
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Table 2: 

Computation Results for 10 Functions for αBBAlgorithm 

 
 

Table 3: 

Computation Results for 10 Functions for KBB Algorithm 
 

 

 

 

The execution time required to achieve the optimal value is considered as a reliable criterion to the algorithm's 

performances. According to the numerical results summarized, in Table (3) and Table (4), the performances of the 

proposed method are clearly better than the performance of the KBB method. As the best initial lower bound obtained 

remains an important criterion for measuring the validity of the underestimator. In Table (2), Table (3) and Table (4), 

the comparative study of the quality of the initial lower bound found by the three algorithms show that our method is 

better than the two methods. In Table 5 just confirmed the competence of our method by doubling the number of 

quadratic we can notice that the values of the lower bound are improved. 
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Table 4: 

Computation Results for 10 Functions for KBBm Algorithm with n=16 

 

Table 5:  

values obtained by  
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Conclusion 

We presented a method of underestimation of non-convex objective based on piecewise quadratic functions have 

explicit minimums. A comparison of the lower bounds favors such quadratic against other guaranteeing the 

underestimation of the objective. This approach is validated by considering a deterministic branch and bound which is 

fully detailed and allows certifying still coaching the value of the global minimum at the end of the performance. 

Many digital experiences are performed, that confirm the effectiveness of this new acceleration technique. The 

performance of the proposed procedure depends on the quality of the chosen lower bound of . Such that, our 

piecewise quadratic lower bounding functions is better than two underestimators introduced in [16, 5]. 
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