

 FULL PAPER PROCEEDING
 Multidisciplinary Studies

 Available online at www.academicfora.com

 Full Paper Proceeding ECBA -2016, Vol. 49- Issue.6, 1-4

 ISBN 978-969-670-117-0

© 2016 The Authors. Published by Academic Fora. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the Scientific & Review committee of ECBA-2016.

ECBA-16

REAL TIME INFORMATION CLASSIFICATION IN TWITTER USING STORM

AKHMEDOV KHUMOYUN1, YUN CUI2 & HANKU LEE3*

1,2,3Konkuk University

Keywords:
Classification

Storm, Statistics

Twitter

Information Retrieval

Big Data

Abstract. We are living in the digital era in which overly vast amount of information is generated almost

constantly. The huge information hubs such as Twitter is one of the main sources of this diverse information

space. However, with more than 500 million tweets sent per day as of 2015, identifying and classifying critical

information when it first emerges on Twitter is a tremendous challenge. Our proposed work is an intention to

tackle this challenge by discovering, extracting and qualifying into 5 generic categories from huge mess of

public tweets in real-time. Going real time with such intention is not a trivial task. There has been extensive

research on information retrieval on the topic. However, most existing works on classification of short text

messages like tweets integrate every message with meta-information from external information sources such as

Wikipedia and WordNet. Automatic text classification and hidden topic extraction techniques do well when

there is meta-information or the context of the tweet is extended with knowledge extracted leveraging huge

collections. But these approaches require online querying which is time consuming and unfit for real time

applications. Hence, we propose slightly different intuitive approach to tackle this issue by leveraging χ2

statistical method as a feature extractor and Storm as a real-time data processing engine.

INTRODUCTION

Document classification is an example of Machine Learning

(ML) in the form of Natural Language Processing (NLP). By

classifying text, we are aiming to assign one or more classes or

categories to a document, making it easier to manage and sort.

This is especially useful for publishers, news sites, blogs or

anyone who deals with a lot of content.

As mentioned earlier in the abstract page, automatic text

classification and hidden topic extraction approaches perform

well when there is meta-information or the context of the tweet is

extended with knowledge retrieved from vast collections such as

Wikipedia. However, these approaches require online querying

which is time consuming and is not suitable for real time

applications. When external features from the world knowledge is

used to enhance the feature set, complex algorithms are required

to carefully reduce overzealous features. These approaches

eliminate the problem of data sparseness but create a new

problem of the “Curse of dimensionality” (see

“https://en.wikipedia.org/wiki/Curse_of_dimensionality”). Hence

efficient ways are necessary to improve the accuracy of

classification by using minimal set of features to represent the

* Corresponding author: Hanku Lee

E-mail: hlee@konkuk.ac.kr

tweet. We use a statistical feature extraction method to determine

the class labels and the set of features.

We classify incoming tweets into five generic categories –

economics, politics, health, sports and miscellaneous messages.

We believe that these categories are diverse and cover most of the

topics. Experimental results using our proposed approach

outperform the baseline Bag-Of-Words model in terms of

accuracy and speed.

RELATED WORK

Most of the related work focuses on trying to eliminate the

problem of data sparseness. One intuitive approach to achieve this

is to inflate the short text with additional information to make it

appear like a large document of text. Then, traditional

classification or clustering algorithms can be applied to it. Some

of the previous works (Sarah Zelikovitz, Haym Hirsh, 2004)

processed the short text classification using the methods through

unlabeled background knowledge to assess document similarity

and unlabeled data in text classification problems, and (Mehran

S., Timothy D. Heilman, 2005) proposed the document similarity

Hanku Lee /ECBA--2016/Full Paper Proceeding Vol No-49, Issue 6, 1-4

International Conference on “Engineering & Technology, Computer Basic & Applied Sciences” ECBA -2016

computing method with web-based core function. Another work

(D. Bollegala, Y. Matsuo, 2007; Sahami&Heilman, 2006; W.

Yih, C. Meek, 2007) primarily focuses on integrating short text

messages with Web search engines like Google, Bing to extract

more information about the short text. More recent works (Phan

& Nguyen, 2008; Hu, X. Sun, N. Zhang; Ramanthan & Gupta,

2007) do away with web searches and instead utilize data

repositories such as Wikipedia. By integrating knowledge

available within the Wikipedia, short text messages can be

enhanced with more semantic knowledge. S. Ramanthan and

Gupta made use of the user-defined categories and concepts

extracted from Wikipedia and experimental results show

significant improvement in accuracy. This approach however will

not capture the up-to-date information and is especially unsuitable

when the input data is highly volatile in its theme like news feeds.

Banerjee et al also mentions that usage of additional Wikipedia 8

concepts (other than titles) did not offer any significant

improvements in performance of various clustering algorithms.

Phan and Nguyen (2008) not only uses the explicit user defined

categories in Wikipedia but extracts hidden topic of Wikipedia

articles to gain more knowledge. Although it eliminates the

problem of data sparseness, it is very time consuming and there is

a need to understand what concepts of Wikipedia are useful to

extract as mentioned in (S. Ramanthan and Gupta, 2007).

One of the biggest challenges in almost all the related work so far

is that by enhancing the feature set by using external knowledge;

a new problem creeps in (the Curse of Dimensionality). When the

feature set becomes too large, data becomes difficult to visualize

and the basis for classification or clustering is lost. Hence, there is

a need to effectively reduce features and the feature size to an

optimal value.

In conclusion, related works on short text messages in recent

times have primarily focused on eliminating the problem of data

sparseness by using external web sources like Wikipedia,

WordNet etc. Querying such sources online poses the problem of

longer time whereas using a snap shot of such data sources has

the problem of out dated information. In this work, we propose

the use of a small feature set to classify Twitter messages in

combination with Naïve Bayes algorithm. Initially, we classify

the Twitter messages into diverse pre-chosen classes like

Economics, Politics, Health, Sports and miscellaneous.

The rest of the paper is organized as follows. First, we provide an

overview of Apache Storm. After that, we give a brief overview

of data collection phase. Then, we discuss our proposed work in

detail. The next chapter contains details about the experimental

results and comparison of the proposed work with some baseline

algorithms. Finally, we conclude with the future work.

OVERVIEW OF APACHE STORM

Apache Storm, a distributed computation framework, created by

Nathan Marz, adds reliable real-time data processing capabilities

to Apache Hadoop. It is fast, scalable, reliable and can be

programmed using a variety of programming languages. Its

architecture consists of three primary node sets:

Nimbus Node

This is the master node. It uploads the computation to be

performed in the cluster, launches worker nodes and even re-

assigns worker nodes in case of failure. There is only one master

node in a cluster.

Zookeeper Nodes

These nodes are assigned on every slave machine. The basic

function of the zookeeper nodes is to keep a check on the

processing happening on the worker nodes. The nimbus

communicates with the worker nodes through the zookeeper.

Supervisor Nodes

There nodes, assigned on every slave machine, start and stop

workers according to commands from the nimbus. There can be

multiple worker nodes on a single slave machine. A key

abstraction in Storm is the topology which is in fact, the program

that keeps running in the Storm cluster. A visual representation of

the topology is a network of the spout and bolts that Storm

employs to perform its computation. A spout is an input stream

that generates input tuples. Spouts are the source of data in a

Storm cluster. In order to receive real-time data, a spout can be

configured with an API or a queuing framework like Kafka. The

spout sends data to bolts. These bolts are where the actual

processing takes place and a cluster may have multiple bolts for

the various processing steps required to achieve the desired result.

Bolts can pass data further on to another bolt or to a location of

data storage.

The reason we chose Storm is that, firstly, it provides very simple

API using high level components like Spout and Bolts, and also it

is faster compared to other similar techs.

DATA COLLECTION

Twitter offers three ways to access its data and these are:

Twitter Search API

Twitter Search API helps to access a data set that exists from

tweets previously written. In the Search API, users ask for tweets

that match a search criteria or even a part of it. The criteria could

be keywords, usernames or locations. But there is a limit to the

number of tweets that can be accessed. For an individual user, the

maximum number of tweets that can be received is the last 3,200

tweets, regardless of the query criteria. With a specific keyword,

Twitter only polls the last 5,000 tweets per keyword.

Twitter Streaming API

Twitter Streaming API is a push of data as tweets happen in near

real-time unlike the Twitter Search API. With Twitter Streaming

API, users register a set of criteria (keywords, usernames,

Hanku Lee /ECBA--2016/Full Paper Proceeding Vol No-49, Issue 6, 1-4

International Conference on “Engineering & Technology, Computer Basic & Applied Sciences” ECBA -2016

locations, named places, etc.) and as tweets match the criteria,

they are pushed directly to the user. This API is free of cost

although the percentage of total tweets users receive with the

Twitter Streaming API varies heavily based on the criteria users

request and also on the traffic. Therefore, use of this API cannot

be relied upon to generate a large number of tweets for real-time

processing.

Twitter Firehose

Twitter Firehose guarantees delivery of 100% of the tweets that

match the criteria. It is very similar to the Twitter Streaming API

as it pushes data to end users in near real-time. But the difference

lies in the cost. Twitter Firehose is not free of cost, unlike the

Streaming API.

Implementation

Storm spout is linked to the Twitter API and is responsible for the

streaming of tweets into the Storm cluster. The spout does not

perform any processing on the data. It simply streams it. These

tweets are then sent by the spout to the bolt in the cluster so that

they can be processed.

PROPOSED SYSTEM

Here we present detailed walkthrough of the workflow and

dataflow of the proposed system. First we give step-by-step

overview of the data processing workflow of the system which

contains 3 steps: Preprocessing, Feature extraction and

Classification. Then, we present dataflow of the system in terms

of spout and bolts.

Workflow of the System

Workflow of the proposed system consists of three phases:

Preprocessing, Feature extraction and Classification.

Preprocessing

This phase is mainly concerned with data cleaning because tweets

are by nature very noisy which contains items like slangs,

uncomplete forms of words, emoticons, etc. Hence, first we

remove non-English words because our work focuses on English

tweets. Then, we perform case normalization in which all

incoming tweets are converted into lowercase. After that, we

perform stemming, the procedure of decreasing relevant tokens

into a single type of token. This procedure contains the

recognition and elimination of suffixes, prefixes and unsuitable

pluralization. After preprocessing the tweets we perform feature

extraction based on statistical method.

Feature Extraction

χ
2
 -based feature extraction. The feature extraction algorithm

based on statistics is as follows:

Input: Training text (tweet) set Ttset

Output: Category feature set Fset

1) For every tweet of the training set, segmenting and part of

speech (POS) tagging, and then marking the set as Tlset

2) Removing the stop words and the words with stop POS, and

counting the word frequency and the word file frequency. Tlset

3) For given category, computing its words weight using the

following method:

4) Counting the total number N of training tweets

5) Computing A as the number of tweets in which term w appears

in the given category Ci

6) Computing B as the number of tweets in which term w appears

in other classes excluding Ci

7) Computing C as the number of tweets in which term w

disappears in the category Ci

8) Computing D as the number of tweets in which term w

disappears in other categories excluding Ci

9) Computing the word weight of w in the given category using

the following expression:

Wweight = N x (A x D – B x C)
2
 / ((A+B) x (A+C) x (B+D))

10) Turn to 3) until all words of this category are completely

calculated.

11) Order the words by the weight descending

12) Selecting the top M words as this category features, M can be

50, 100 or 200, etc.

13) End

Classification

In the final classification phase we leveraged several ML

classification algorithms such Naïve Bayesian, SVM (Support

Vector Machines) and SMO (Sequential Minimal Optimization).

We conducted experimental comparison of the above mentioned

algorithms in terms of efficiency and we will provide detailed

report in the next section. Here, we did not include each

algorithm’s details for brevity since it will consume a lot of space.

But we included links to the sources in the reference page in

which one can find details of each algorithm.

Dataflow of the System

Here, we present dataflow of the system in terms of topology of

Storm spout and bolts. First, CrawlerSpout, which is responsible

for retrieving live public tweets, will connect to Twitter’s

Streaming API using twitter4j library. Then, DataCleanerBolt

pulls tweets from the spout for efficient data cleaning from where

then cleaned tweets are pulled by PreprocessingBolt which is

responsible for preprocessing step defined in workflow of the

system. After this, step FeatureExtractorTFIDFBolt,

FeatureExtractorBOWBolt and FeatureExtractorSTATBolt bolts

as names suggests will extract features from tweets according to

their definition. In this step, main importance is given to

FeatureExtractorSTATBolt since it is the implementation of our

proposed approach, χ
2
 statistical method for feature extraction.

Hanku Lee /ECBA--2016/Full Paper Proceeding Vol No-49, Issue 6, 1-4

International Conference on “Engineering & Technology, Computer Basic & Applied Sciences” ECBA -2016

Finally, in the last step of our storm topology, implementations of

three classification algorithms, Naïve Bayesian, SVM and SMO,

NBClassifierBolt, SVMClassifierBolt and SMOClassifierBolt

will classify tweets coming from feature extractor bolts and write

the results to filesystem for further analysis. The high level

overview of the described topology can be seen in Figure 1,

which is provided at the end of the paper.

EXPERIMENTAL RESULTS

In this chapter, we present the experimental results for techniques

described in the earlier chapter. All experiments were run using

available implementation of Weka. Three classification

algorithms, namely Naïve Bayes, SVM and Sequential Minimal

Optimization (SMO) were used on the training data. Experimental

results are based on 5-fold cross validation of the data.

The features used for each of these experiments are as follows:

 TF-IDF: Term frequency-invert document frequency

 BOW: Bag-Of-Words is chosen as the baseline

 Statistical method: our proposed method

We ran our Storm topology in 3-node cluster for 1 hour. The

amount of processed tweets in this period was over 10, 000

excluding non-English tweets. The distribution of tweets per

category is shown in Figure 2.

In the Figure 3, it can be seen that our proposed statistical method

performs the best amongst any other chosen feature set for all the

three algorithms. BOW has the least accuracy among all other

feature sets.

CONCLUSIONS AND FUTURE WORK

The work described in this paper is a step towards efficient

classification of short text messages. Short text messages are

harder to classify than larger corpus of text. This is primarily

because there are few word occurrences and hence it is difficult to

capture the semantics of such messages. Hence, traditional

approaches like “Bag-Of-Words” and TF-IDF when applied to

classify short texts do not perform as well as expected.

We have proposed a framework to classify Twitter messages

which serve as an excellent candidate for short text messages

because of their 140 character limit. In this framework, we

leveraged several well-known classification algorithms namely,

Naïve Bayesian, SVM and SMO, using Apache Storm.

In this work, we mainly focused on tweets from Twitter for

classification, but short messages are not limited to just tweets.

Hence, we have a plan to improve our framework to work with

other types of short messages like blog comments, news

comments and instant messages.

REFERENCES

Bollegala, D., Matsuo, Y., & Ishizuka, M. (2007). Measuring semantic similarity between words using web search engines. www, 7,

757-766.

Sahami, M., & Heilman, T. D. (2006, May). A web-based kernel function for measuring the similarity of short text snippets.

In Proceedings of the 15th international conference on World Wide Web (pp. 377-386). AcM.

Yih, W. T., & Meek, C. (2007, July). Improving similarity measures for short segments of text. In AAAI (Vol. 7, No. 7, pp. 1489-1494).

Phan, X. H., Nguyen, L. M., & Horiguchi, S. (2008, April). Learning to classify short and sparse text & web with hidden topics from

large-scale data collections. In Proceedings of the 17th international conference on World Wide Web (pp. 91-100). ACM.

Hu, X., Sun, N., Zhang, C., & Chua, T. S. (2009, November). Exploiting internal and external semantics for the clustering of short texts

using world knowledge. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 919-

928). ACM.

Banerjee, S., Ramanathan, K., & Gupta, A. (2007, July). Clustering short texts using wikipedia. In Proceedings of the 30th annual

international ACM SIGIR conference on Research and development in information retrieval (pp. 787-788). ACM.

Zelikovitz, S., & Hirsh, H. (2000, June). Improving short text classification using unlabeled background knowledge to assess document

similarity. InProceedings of the seventeenth international conference on machine learning(Vol. 2000, pp. 1183-1190).

Zelikovitz, S., & Hirsh, H. (2004). Transductive LSI for Short Text Classification Problems. In FLAIRS conference (pp. 556-561).

Anonymous. (n.d). Naïve Bayesian. Reteved from https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Anonymous. (n.d). Support vector machine. Retrieved from https://en.wikipedia.org/wiki/Support_vector_machine

Anonymous. (n.d). Sequential minimal optimization Retrieved from https://en.wikipedia.org/wiki/Sequential_minimal_optimization

Sahami, M., & Heilman, T. D. (2006, May). A web-based kernel function for measuring the similarity of short text snippets.

In Proceedings of the 15th international conference on World Wide Web (pp. 377-386). AcM.

Anonymous. (n.d). Curse of Dimensionality. Retrieved from https://en.wikipedia.org/wiki/Curse_of_dimensionality.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Sequential_minimal_optimization
https://en.wikipedia.org/wiki/Curse_of_dimensionality

