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Abstract. We are living in the digital era in which overly vast amount of information is generated almost 

constantly. The huge information hubs such as Twitter is one of the main sources of this diverse information 

space. However, with more than 500 million tweets sent per day as of 2015, identifying and classifying critical 

information when it first emerges on Twitter is a tremendous challenge. Our proposed work is an intention to 

tackle this challenge by discovering, extracting and qualifying into 5 generic categories from huge mess of 

public tweets in real-time. Going real time with such intention is not a trivial task. There has been extensive 

research on information retrieval on the topic. However, most existing works on classification of short text 

messages like tweets integrate every message with meta-information from external information sources such as 

Wikipedia and WordNet. Automatic text classification and hidden topic extraction techniques do well when 

there is meta-information or the context of the tweet is extended with knowledge extracted leveraging huge 

collections. But these approaches require online querying which is time consuming and unfit for real time 

applications. Hence, we propose slightly different intuitive approach to tackle this issue by leveraging χ2 

statistical method as a feature extractor and Storm as a real-time data processing engine. 

                                                                                                          

         
 

INTRODUCTION 

Document classification is an example of Machine Learning 

(ML) in the form of Natural Language Processing (NLP). By 

classifying text, we are aiming to assign one or more classes or 

categories to a document, making it easier to manage and sort. 

This is especially useful for publishers, news sites, blogs or 

anyone who deals with a lot of content.  

As mentioned earlier in the abstract page, automatic text 

classification and hidden topic extraction approaches perform 

well when there is meta-information or the context of the tweet is 

extended with knowledge retrieved from vast collections such as 

Wikipedia. However, these approaches require online querying 

which is time consuming and is not suitable for real time 

applications. When external features from the world knowledge is 

used to enhance the feature set, complex algorithms are required 

to carefully reduce overzealous features. These approaches 

eliminate the problem of data sparseness but create a new 

problem of the “Curse of dimensionality” (see 

“https://en.wikipedia.org/wiki/Curse_of_dimensionality”). Hence 

efficient ways are necessary to improve the accuracy of 

classification by using minimal set of features to represent the  
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tweet. We use a statistical feature extraction method to determine 

the class labels and the set of features. 

We classify incoming tweets into five generic categories – 

economics, politics, health, sports and miscellaneous messages. 

We believe that these categories are diverse and cover most of the 

topics. Experimental results using our proposed approach 

outperform the baseline Bag-Of-Words model in terms of 

accuracy and speed. 

RELATED WORK 

Most of the related work focuses on trying to eliminate the 

problem of data sparseness. One intuitive approach to achieve this 

is to inflate the short text with additional information to make it 

appear like a large document of text. Then, traditional 

classification or clustering algorithms can be applied to it. Some 

of the previous works (Sarah Zelikovitz, Haym Hirsh, 2004) 

processed the short text classification using the methods through 

unlabeled background knowledge to assess document similarity 

and unlabeled data in text classification problems, and (Mehran 

S., Timothy D. Heilman, 2005) proposed the document similarity  
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computing method with web-based core function. Another work 

(D. Bollegala, Y. Matsuo, 2007; Sahami&Heilman, 2006; W. 

Yih, C. Meek, 2007) primarily focuses on integrating short text 

messages with Web search engines like Google, Bing to extract 

more information about the short text. More recent works (Phan 

& Nguyen, 2008; Hu, X. Sun, N. Zhang; Ramanthan & Gupta, 

2007) do away with web searches and instead utilize data 

repositories such as Wikipedia. By integrating knowledge 

available within the Wikipedia, short text messages can be 

enhanced with more semantic knowledge. S. Ramanthan and 

Gupta made use of the user-defined categories and concepts 

extracted from Wikipedia and experimental results show 

significant improvement in accuracy. This approach however will 

not capture the up-to-date information and is especially unsuitable 

when the input data is highly volatile in its theme like news feeds. 

Banerjee et al also mentions that usage of additional Wikipedia 8 

concepts (other than titles) did not offer any significant 

improvements in performance of various clustering algorithms. 

Phan and Nguyen (2008) not only uses the explicit user defined 

categories in Wikipedia but extracts hidden topic of Wikipedia 

articles to gain more knowledge. Although it eliminates the 

problem of data sparseness, it is very time consuming and there is 

a need to understand what concepts of Wikipedia are useful to 

extract as mentioned in (S. Ramanthan and Gupta, 2007).  

One of the biggest challenges in almost all the related work so far 

is that by enhancing the feature set by using external knowledge; 

a new problem creeps in (the Curse of Dimensionality). When the 

feature set becomes too large, data becomes difficult to visualize 

and the basis for classification or clustering is lost. Hence, there is 

a need to effectively reduce features and the feature size to an 

optimal value. 

In conclusion, related works on short text messages in recent 

times have primarily focused on eliminating the problem of data 

sparseness by using external web sources like Wikipedia, 

WordNet etc. Querying such sources online poses the problem of 

longer time whereas using a snap shot of such data sources has 

the problem of out dated information. In this work, we propose 

the use of a small feature set to classify Twitter messages in 

combination with Naïve Bayes algorithm. Initially, we classify 

the Twitter messages into diverse pre-chosen classes like 

Economics, Politics, Health, Sports and miscellaneous.  

The rest of the paper is organized as follows. First, we provide an 

overview of Apache Storm. After that, we give a brief overview 

of data collection phase. Then, we discuss our proposed work in 

detail. The next chapter contains details about the experimental 

results and comparison of the proposed work with some baseline 

algorithms. Finally, we conclude with the future work. 

 

OVERVIEW OF APACHE STORM 

Apache Storm, a distributed computation framework, created by 

Nathan Marz, adds reliable real-time data processing capabilities 

to Apache Hadoop. It is fast, scalable, reliable and can be 

programmed using a variety of programming languages. Its 

architecture consists of three primary node sets: 

Nimbus Node 

This is the master node. It uploads the computation to be 

performed in the cluster, launches worker nodes and even re-

assigns worker nodes in case of failure. There is only one master 

node in a cluster.  

Zookeeper Nodes 

These nodes are assigned on every slave machine. The basic 

function of the zookeeper nodes is to keep a check on the 

processing happening on the worker nodes. The nimbus 

communicates with the worker nodes through the zookeeper.  

Supervisor Nodes 

There nodes, assigned on every slave machine, start and stop 

workers according to commands from the nimbus. There can be 

multiple worker nodes on a single slave machine. A key 

abstraction in Storm is the topology which is in fact, the program 

that keeps running in the Storm cluster. A visual representation of 

the topology is a network of the spout and bolts that Storm 

employs to perform its computation. A spout is an input stream 

that generates input tuples. Spouts are the source of data in a 

Storm cluster. In order to receive real-time data, a spout can be 

configured with an API or a queuing framework like Kafka. The 

spout sends data to bolts. These bolts are where the actual 

processing takes place and a cluster may have multiple bolts for 

the various processing steps required to achieve the desired result. 

Bolts can pass data further on to another bolt or to a location of 

data storage.  

The reason we chose Storm is that, firstly, it provides very simple 

API using high level components like Spout and Bolts, and also it 

is faster compared to other similar techs. 

 

DATA COLLECTION 

Twitter offers three ways to access its data and these are:  

Twitter Search API 

Twitter Search API helps to access a data set that exists from 

tweets previously written. In the Search API, users ask for tweets 

that match a search criteria or even a part of it. The criteria could 

be keywords, usernames or locations. But there is a limit to the 

number of tweets that can be accessed. For an individual user, the 

maximum number of tweets that can be received is the last 3,200 

tweets, regardless of the query criteria. With a specific keyword, 

Twitter only polls the last 5,000 tweets per keyword.  

Twitter Streaming API 

Twitter Streaming API is a push of data as tweets happen in near 

real-time unlike the Twitter Search API. With Twitter Streaming 

API, users register a set of criteria (keywords, usernames, 
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locations, named places, etc.) and as tweets match the criteria, 

they are pushed directly to the user. This API is free of cost 

although the percentage of total tweets users receive with the 

Twitter Streaming API varies heavily based on the criteria users 

request and also on the traffic. Therefore, use of this API cannot 

be relied upon to generate a large number of tweets for real-time 

processing.  

Twitter Firehose 

Twitter Firehose guarantees delivery of 100% of the tweets that 

match the criteria. It is very similar to the Twitter Streaming API 

as it pushes data to end users in near real-time. But the difference 

lies in the cost. Twitter Firehose is not free of cost, unlike the 

Streaming API.  

Implementation 

Storm spout is linked to the Twitter API and is responsible for the 

streaming of tweets into the Storm cluster. The spout does not 

perform any processing on the data. It simply streams it. These 

tweets are then sent by the spout to the bolt in the cluster so that 

they can be processed. 

PROPOSED SYSTEM 

Here we present detailed walkthrough of the workflow and 

dataflow of the proposed system. First we give step-by-step 

overview of the data processing workflow of the system which 

contains 3 steps: Preprocessing, Feature extraction and 

Classification. Then, we present dataflow of the system in terms 

of spout and bolts.  

 

Workflow of the System 

Workflow of the proposed system consists of three phases: 

Preprocessing, Feature extraction and Classification. 

 

Preprocessing 

This phase is mainly concerned with data cleaning because tweets 

are by nature very noisy which contains items like slangs, 

uncomplete forms of words, emoticons, etc. Hence, first we 

remove non-English words because our work focuses on English 

tweets. Then, we perform case normalization in which all 

incoming tweets are converted into lowercase. After that, we 

perform stemming, the procedure of decreasing relevant tokens 

into a single type of token. This procedure contains the 

recognition and elimination of suffixes, prefixes and unsuitable 

pluralization. After preprocessing the tweets we perform feature 

extraction based on statistical method. 

 

Feature Extraction 

χ
2
 -based feature extraction. The feature extraction algorithm 

based on statistics is as follows:  

Input: Training text (tweet) set Ttset  

Output: Category feature set Fset  

1) For every tweet of the training set, segmenting and part of 

speech (POS) tagging, and then marking the set as Tlset  

2) Removing the stop words and the words with stop POS, and 

counting the word frequency and the word file frequency. Tlset  

3) For given category, computing its words weight using the 

following method:  

4) Counting the total number N of training tweets  

5) Computing A as the number of tweets in which term w appears 

in the given category Ci  

6) Computing B as the number of tweets in which term w appears 

in other classes excluding Ci  

7) Computing C as the number of tweets in which term w 

disappears in the category Ci  

8) Computing D as the number of tweets in which term w 

disappears in other categories excluding Ci  

9) Computing the word weight of w in the given category using 

the following expression:  

Wweight = N x (A x D – B x C)
2
 / ( (A+B) x (A+C) x (B+D) )   

10) Turn to 3) until all words of this category are completely 

calculated.  

11) Order the words by the weight descending  

12) Selecting the top M words as this category features, M can be 

50, 100 or 200, etc.  

13) End 

Classification 

In the final classification phase we leveraged several ML 

classification algorithms such Naïve Bayesian, SVM (Support 

Vector Machines) and SMO (Sequential Minimal Optimization). 

We conducted experimental comparison of the above mentioned 

algorithms in terms of efficiency and we will provide detailed 

report in the next section. Here, we did not include each 

algorithm’s details for brevity since it will consume a lot of space. 

But we included links to the sources in the reference page in 

which one can find details of each algorithm. 

Dataflow of the System 

Here, we present dataflow of the system in terms of topology of 

Storm spout and bolts. First, CrawlerSpout, which is responsible 

for retrieving live public tweets, will connect to Twitter’s 

Streaming API using twitter4j library. Then, DataCleanerBolt 

pulls tweets from the spout for efficient data cleaning from where 

then cleaned tweets are pulled by PreprocessingBolt which is 

responsible for preprocessing step defined in workflow of the 

system. After this, step FeatureExtractorTFIDFBolt, 

FeatureExtractorBOWBolt and FeatureExtractorSTATBolt bolts 

as names suggests will extract features from tweets according to 

their definition. In this step, main importance is given to 

FeatureExtractorSTATBolt since it is the implementation of our 

proposed approach, χ
2
 statistical method for feature extraction. 
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Finally, in the last step of our storm topology, implementations of 

three classification algorithms, Naïve Bayesian, SVM and SMO, 

NBClassifierBolt, SVMClassifierBolt and SMOClassifierBolt 

will classify tweets coming from feature extractor bolts and write 

the results to filesystem for further analysis. The high level 

overview of the described topology can be seen in Figure 1, 

which is provided at the end of the paper.  

 

EXPERIMENTAL RESULTS 

In this chapter, we present the experimental results for techniques 

described in the earlier chapter. All experiments were run using 

available implementation of Weka. Three classification 

algorithms, namely Naïve Bayes, SVM and Sequential Minimal 

Optimization (SMO) were used on the training data. Experimental 

results are based on 5-fold cross validation of the data.  

The features used for each of these experiments are as follows:  

 TF-IDF: Term frequency-invert document frequency 

 BOW: Bag-Of-Words is chosen as the baseline  

 Statistical method: our proposed method 

We ran our Storm topology in 3-node cluster for 1 hour. The 

amount of processed tweets in this period was over 10, 000 

excluding non-English tweets. The distribution of tweets per 

category is shown in Figure 2.  

In the Figure 3, it can be seen that our proposed statistical method 

performs the best amongst any other chosen feature set for all the 

three algorithms. BOW has the least accuracy among all other 

feature sets. 

CONCLUSIONS AND FUTURE WORK 

The work described in this paper is a step towards efficient 

classification of short text messages. Short text messages are 

harder to classify than larger corpus of text. This is primarily 

because there are few word occurrences and hence it is difficult to 

capture the semantics of such messages. Hence, traditional 

approaches like “Bag-Of-Words” and TF-IDF when applied to 

classify short texts do not perform as well as expected. 

We have proposed a framework to classify Twitter messages 

which serve as an excellent candidate for short text messages 

because of their 140 character limit. In this framework, we 

leveraged several well-known classification algorithms namely, 

Naïve Bayesian, SVM and SMO, using Apache Storm.  

In this work, we mainly focused on tweets from Twitter for 

classification, but short messages are not limited to just tweets. 

Hence, we have a plan to improve our framework to work with 

other types of short messages like blog comments, news 

comments and instant messages. 
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